Cho tam giác ABC có AB > AC. Trên cạnh AB lấy một điểm D sao cho hạ AD = AC.
Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường thẳng vuông góc OH, OK xuống BC và BD (\(H \in BC,K \in BD\)).
a) Chứng minh rằng OH < OK.
b) So sánh hai cung nhỏ BD và BC.
Giải
a) Trong ∆ABC ta có:
BC > AB – AC (bất đẳng thức tam giác)
Mà AC = AD (gt)
\( \Rightarrow \) BC > AB – AD
Hay BC > BD
Trong (O) ta có: BC > BD
\( \Rightarrow \) OH < OK (dây lớn hơn gần tâm hơn)
b) Ta có dây cung BC > BD
Suy ra: \(\overparen{BC}\) > \(\overparen{BD}\) (dây lớn hơn căng cung lớn hơn).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục