Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 10 trang 239 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 10 trang 239 SBT Đại số 10 Nâng cao

Giải các phương trình:

a) \(\dfrac{{13}}{{2{x^2} + x - 21}} + \dfrac{1}{{2x + 7}} = \dfrac{6}{{{x^2} - 9}};\)

.b) \(\dfrac{{x + 1}}{{x - 1}} + \dfrac{{x - 2}}{{x + 2}} + \dfrac{{x - 3}}{{x + 3}} + \dfrac{{x + 4}}{{x - 4}} = 4.\)

Giải:

a) \(x =  - 4.\)

b) Ta có

\(\begin{array}{l}\dfrac{{x + 1}}{{x - 1}} = 1 + \dfrac{2}{{x - 1}},\\\dfrac{{x - 2}}{{x + 2}} = 1 - \dfrac{4}{{x + 2}},\\\dfrac{{x - 3}}{{x + 3}} = 1 - \dfrac{6}{{x + 3}},\\\dfrac{{x + 4}}{{x - 4}} = 1 + \dfrac{8}{{x - 4}},\end{array}\)

nên phương trình đã cho trở thành \(\dfrac{1}{{x - 1}} - \dfrac{2}{{x + 2}} - \dfrac{3}{{x + 3}} + \dfrac{4}{{x - 4}} = 0\)

hay \(\dfrac{{5x - 8}}{{\left( {x - 1} \right)\left( {x - 4} \right)}} = \dfrac{{5x + 12}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}.\)

Từ đó phương trình đã cho tương đương với hệ

\(\left\{ \begin{array}{l}\left( {5x - 8} \right)\left( {x + 2} \right)\left( {x + 3} \right) = \left( {5x + 12} \right)\left( {x - 1} \right)\left( {x - 4} \right)\\\left( {x - 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x - 4} \right) \ne 0\end{array} \right.\,\,\,\,\left( * \right)\)

Phương trình thứ nhất của hệ (*) được biến đổi thành phương trình

\({x^2} + x - \dfrac{{16}}{5} = 0\) và có hai nghiệm \({x_1} = \dfrac{1}{2}\left( { - 1 + \sqrt {\dfrac{{69}}{5}} } \right)\) và \({x_2} = \dfrac{1}{2}\left( { - 1 - \sqrt {\dfrac{{69}}{5}} } \right).\)

Vì hai nghiệm này thỏa mãn điều kiện thứ hai của hệ (*) nên chúng là nghiệm của hai phương trình đã cho.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan