Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 12.3 trang 99 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
4.3 trên 3 phiếu

Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC lấy điểm F sao cho DE = CF. Chứng minh rằng AE = DF và AE ⊥ DF.

Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC lấy điểm F sao cho DE = CF. Chứng minh rằng AE = DF và AE ⊥ DF.

Giải:                                                                       

Xét ∆ ADE và ∆ DCF:

AD = DC (vì ABCD là hình vuông)

\(\widehat D = \widehat C = {90^0}\)

DE = CF (gt)

Do đó: ∆ ADE = ∆ DCF (c.g.c)

⇒ AE = DF

\(\widehat {EAD} = \widehat {FDC}\)

\((\widehat {EAD} + \widehat {DEA} = {90^0}\) (vì ∆ ADE vuông tại A)

\( \Rightarrow \widehat {FDC} + \widehat {DEA} = {90^0}\)

Gọi I là giao điểm của AE và DF.

Suy ra: \(\widehat {IDE} + \widehat {DEI} = {90^0}\)

Trong ∆ DEI ta có: \(\widehat {DIE} = {180^0} - \left( {\widehat {IDE} + \widehat {DEI}} \right) = {180^0} - {90^0} = {90^0}\)

Suy ra: AE ⊥ DF

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan