Hình thoi ABCD có\(\widehat A = {60^0}\). Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì ? Vì sao ?
Giải:
Xét hai tam giác vuông BEA và BFC:
\(\widehat {BEA} = \widehat {BFC} = {90^0}\)
\(\widehat A = \widehat C\) (tính chất hình thoi)
BA = BC (gt)
Do đó: ∆ BEA = ∆ BFC (cạnh huyền, góc nhọn)
⇒ BE = BF (hai cạnh tương ứng) ⇒ ∆ BEF cân tại B
\( \Rightarrow {\widehat B_1} = {\widehat B_2}\) (hai góc tương ứng)
⇒ Trong tam giác vuông BEA ta có:
\(\eqalign{ & \Rightarrow \widehat A + {\widehat B_1} = {90^0} \Rightarrow {\widehat B_1} = {90^0} - \widehat A = {90^0} - {60^0} = {30^0} \cr & \Rightarrow {\widehat B_2} = {\widehat B_1} = {30^0} \cr} \)
\( \Rightarrow \widehat A + \widehat {ABC} = {180^0}\) (hai góc trong cùng phía bù nhau)
\(\eqalign{ & \Rightarrow \widehat {ABC} = {180^0} - \widehat A = {180^0} - {60^0} = {120^0} \cr & \Rightarrow \widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3} \cr & \Rightarrow {\widehat B_3} = \widehat {ABC} - \left( {{{\widehat B}_1} + {{\widehat B}_2}} \right)\cr & = {120^0} - \left( {{{30}^0} + {{30}^0}} \right) = {60^0} \cr} \)
Vậy ∆ BEF đều.
Sachbaitap.com
>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục