Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.19 trang 33 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 2.19 trang 33 SBT Đại số 10 Nâng cao

a. Cho điểm \(A\left( {{x_0};{y_0}} \right)\). Hãy xác định tọa độ của điểm B, biết rằng B đối xứng với A qua trục hoành.

b. Chứng minh rằng hai đường thẳng \(y = x – 2\) và \(y = 2 – x\) đối xứng với nhau qua trục hoành.

c. Tìm biểu thức xác định hàm số \(y = f(x)\), biết rằng đồ thị của nó là đường thẳng đối xứng với đường thẳng \(y = -2x + 3\) qua trục hoành.

Giải:

a. \(B\left( {{x_0}; - {y_0}} \right)\)

b. Muốn chứng minh hai đường thẳng \((d_1)\) và \((d_2)\) đối xứng nhau qua trục hoành, ta chứng minh rằng nếu \(A(x_0 ; y_0)\) là một điểm tùy ý thuộc \((d_1)\) thì điểm đối xứng với \(A\) qua trục hoành, tức là điểm \(B(x_0 ; -y_0)\) thuộc \((d_2)\) và ngược lại. Thật vậy, gọi \((d_1)\) là đường thẳng \(y = x – 2\), \((d_2)\) là đường thẳng \(y = 2 – x\), ta có

\(A\left( {{x_0};{y_0}} \right) \in \left( {{d_1}} \right) \)

\(\Leftrightarrow {y_0} = {x_0} - 2 \)

\(\Leftrightarrow  - {y_0} = 2 - {x_0}\)

\(\Leftrightarrow B\left( {{x_0}; - {y_0}} \right) \in \left( {{d_2}} \right)\)

Từ đó suy ra đpcm.

c. Tương tự như câu trên, ta dễ dàng chứng minh được rằng đồ thị của hai hàm số \(y = f(x)\) và \(y = -f(x)\) đối xứng với nhau qua trục hoành.

Do đó, đường thẳng đối xứng với đường thẳng \(y = -2x + 3\) qua trục hoành là đồ thị của hàm số \(y = -(-2x + 3)\), tức là hàm số \(y = 2x – 3.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan