Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.22 trang 33 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 2.22 trang 33 SBT Đại số 10 Nâng cao

a. Tìm điểm A sao cho đường thẳng \(y = 2mx + 1 – m\) luôn đi qua \(A\), dù m lấy bất cứ giá trị nào.

b. Tìm điểm B sao cho đường thẳng \(y = mx – 3 – x\) luôn đi qua \(B\), dù m lấy bất cứ giá trị nào.

Giải:

a. Giả sử điểm A cần tìm có tọa độ \((x_0 ; y_0)\). Khi đó, vì \(A\) thuộc đường thẳng \(y = 2mx + 1 – m\) với mọi \(m\) nên đẳng thức

\({y_0} = 2m{x_0} + 1 - m,\) hay \(\left( {2{x_0} - 1} \right)m - {y_0} = 0\)

Xảy ra với mọi \(m\). Điều đó chỉ có thể xảy ra khi ta có đồng thời \(2{x_0} - 1 = 0\) và \(1 - {y_0} = 0,\) nghĩa là \({x_0} = {1 \over 2}\) và \({y_0} = 1.\) Vậy tọa độ của A là \(\left( {{1 \over 2};1} \right)\)

Ngược lại, dễ thấy giá trị của hàm số \(y = 2mx + 1 – m\) tại \(x = {1 \over 2}\) luôn bằng 1 với mọi \(m\), chứng tỏ đồ thị của nó luôn đi qua điểm \(A\left( {{1 \over 2};1} \right)\) với mọi \(m\).

b. \(B(0 ; -3)\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan