Cho hai tam giác A’B’C’ và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số chu vi của gai tam giác cũng bằng k.
Giải:
Vì ∆ A’B’C’ đồng dạng ∆ ABC theo tỉ số k nên ta có:
\({{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} = k\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\({{A'B'} \over {AB}} = {{A'C'} \over {AC}} = {{B'C'} \over {BC}} = {{A'B' + A'C' + B'C'} \over {AB + AC + BC}}\)
Suy ra: \({{A'B' + A'C' + B'C'} \over {AB + AC + BC}} = k\)
Vậy \(\dfrac{{{P_{A'B'C'}}}}{{{P_{ABC}}}} = k\) với P là chu vi
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục