Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.7 trang 30 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 2.7 trang 30 SBT Đại số 10 Nâng cao

Bằng cách xét tỉ số \({{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}}\), hãy nêu sự biến thiên của các hàm số sau (không yêu cầu lập bảng biến thiên của nó) trên các khoảng đã cho :

a. \(y = {x^2} + 4x + 1\) trên mỗi khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\)

b. \(y =  - {x^2} + 2x + 5\) trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)

c. \(y = {x \over {x + 1}}\) trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)

d. \(y = {{2x + 3} \over { - x + 2}}\) trên mỗi khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\)

Giải:

a. \({{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}} = {x_2} + {x_1} + 4\)

Trên khoảng \(\left( { - \infty ; - 2} \right)\) ta có \({x_2} + {x_1} + 4 < 0\) nên hàm số nghịch biến.

Trên khoảng \(\left( { - 2; + \infty } \right),\) ta có \({x_2} + {x_1} + 4 > 0\) nên hàm số đồng biến.

b. \({{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}} =  - {x_2} - {x_1} + 2.\)

Trên khoảng \(\left( { - \infty ;1} \right),\) ta có \( - {x_2} - {x_1} + 2 > 0\) nên hàm số đồng biến.

Trên khoảng \(\left( {1; + \infty } \right),\) ta có \( - {x_2} - {x_1} + 2 < 0\) nên hàm số nghịch biến.

c. Với hai số phân biệt \(x_1\) và \(x_2\) thuộc tập xác định của hàm số, ta có :

\(\eqalign{
& f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = {{{x_2}} \over {{x_2} + 1}} - {{{x_1}} \over {{x_1} + 1}} \cr
& = {{{x_2} - {x_1}} \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}, \cr
& {{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}} = {1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} \cr} \)

Do đó:

- Nếu \(x_1 < -1\) và \(x_2 < -1\) thì \(\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\) và \({1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0,\) suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\)

- Nếu \(x_1 > -1\) và \(x_2 > -1\) thì \(\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) > 0\) và \({1 \over {\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0,\) suy ra hàm số cũng đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\)

d. \({{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)} \over {{x_2} - {x_1}}} = {7 \over {\left( { - {x_2} + 2} \right)\left( { - {x_1} + 2} \right)}}.\) Từ đó suy ra hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\,và\,\left( {2; + \infty } \right)\) .

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan