Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 32 trang 10 Sách bài tập (SBT) Toán 8 tập 2

Bình chọn:
3.4 trên 13 phiếu

Cho phương trình

Cho phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), trong đó k là một số.

a. Tìm các giá trị của k sao cho một trong các nghiệm của phương trình là x = 1.

b. Với mỗi giá trị của k vừa tìm được ở câu a, hãy giải phương trình đã cho.

Giải:

a. Thay x = 1 vào phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), ta có:

\(\eqalign{  & \left( {3.1 + 2k - 5} \right)\left( {1 - 3k + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2k - 2} \right)\left( {2 - 3k} \right) = 0 \cr} \)

\( \Leftrightarrow 2k - 2 = 0\)hoặc \(2 - 3k = 0\)

 \(2k - 2 = 0 \Leftrightarrow k = 1\)

 \(2 - 3k = 0 \Leftrightarrow k = {2 \over 3}\)

Vậy với k = 1 hoặc \(k = \dfrac{2}{3}\)  thì phương tình đã cho có nghiệm x = 1

b. Với k = 1, ta có phương trình:

\(\left( {3x - 3} \right)\left( {x - 2} \right) = 0\)

\( \Leftrightarrow 3x - 3 = 0\) hoặc \(x - 2 = 0\)

 \(3x - 3 = 0 \Leftrightarrow x = 1\)

 \(x - 2 = 0 \Leftrightarrow x = 2\)

 Vậy phương trình có nghiệm x = 1 hoặc x = 2

Với k = \({2 \over 3}\), ta có phương trình:

\(\left( {3x - {{11} \over 3}} \right)\left( {x - 1} \right) = 0\)

\( \Leftrightarrow 3x - {{11} \over 3} = 0\)hoặc \(x - 1 = 0\)

 \(3x - {{11} \over 3} = 0 \Leftrightarrow x = {{11} \over 9}\)

 \(x - 1 = 0 \Leftrightarrow x = 1\)

 Vậy phương trình có nghiệm \(x = {{11} \over 9}\) hoặc x = 1

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan