Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 33 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
3.1 trên 32 phiếu

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Giải:

Ta có: AD = BC = 3 (cm)  (tính chất hình thang cân)

\(\widehat {ABD} = \widehat {BDC}\) (so le trong)

\(\eqalign{
& \widehat {ADB} = \widehat {BDC}(gt) \cr
& \Rightarrow \widehat {ABD} = \widehat {ADB} \cr} \)

⇒ ∆ ABD cân tại A

⇒ AB = AD = 3 (cm)

∆ BDC vuông tại B

\( \Rightarrow \widehat {BDC} + \widehat C = {90^0}\)

\(\widehat {ADC} = \widehat C\) (gt)

Mà \(\widehat {BDC} = {1 \over 2}\widehat {ADC}\) nên  \(\widehat {BDC} = {1 \over 2}\widehat C\)

\(\widehat C + {1 \over 2}\widehat C = {90^0} \Rightarrow \widehat C = {60^0}\)

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

\(\widehat {BEC} = \widehat {ADC}\)  (đồng vị )

Suy ra:  \(\widehat {BEC} = \widehat C\)

⇒ ∆ BEC cân tại B có \(\widehat C = {60^0}\)

⇒ ∆ BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6 (cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3+3 +6 +3=15 (cm)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan