Một cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó.
Giải
Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ \(n\) của cấp số cộng cần tìm. Theo giả thiết của bài ra, ta có \({u_3} + {u_5} = 28\) và \({u_5} + {u_7} = 140.\)Từ đó
\(\left. \matrix{
2{u_4} = 28 \Rightarrow {u_4} = 14 \hfill \cr
2{u_6} = 140 \Rightarrow {u_6} = 70 \hfill \cr} \right\} \)
\(\Rightarrow 2{u_5} = {u_4} + {u_6} = 14 + 70 = 84 \Rightarrow {u_5} = 42.\)
Suy ra
\(\eqalign{
& {u_7} = 140 - {u_5} = 140 - 42 = 98 \cr
& {u_3} = 28 - {u_5} = 28 - 42 = - 14 \cr
& {u_2} = 2{u_3} - {u_4} = 2.( - 14) - 14 = - 42 \cr
& {u_1} = 2{u_2} - {u_3} = 2.( - 42) - ( - 14) = - 70. \cr} \)
Vậy, cấp số cộng cần tìm là : \( - 70, - 42, - 14,14,42,70,98.\)
sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục