Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.36 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho cấp số cộng

Cho cấp số cộng \(({u_n})\) có số hạng đầu \({u_1} = 2\) và công sai \(d =  - 3.\)

Trên mặt phẳng tọa độ, lấy các điểm \({A_1},{A_2},...\) sao cho với mỗi số nguyên dương n, điểm \({A_n}\) có tọa độ là \((n,{u_n})\). Chứng minh rằng tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên một đường thẳng. Hãy cho biết phương trình của đường thẳng đó.

Giải

Từ giả thiết của bài toán suy ra \({u_n} = 2 + (n - 1).( - 3) =  - 3n + 5\) với mọi \(n \ge 1.\) Vì thế với mỗi \(n \ge 1\), điểm \({A_n}(n,{u_n})\) nằm trên đường thẳng \(y =  - 3x + 5\). Nới một cách khác:

Tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên đường thẳng \(y =  - 3x + 5\).

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan