Cho cấp số cộng \(({u_n})\) có số hạng đầu \({u_1} = 2\) và công sai \(d = - 3.\)
Trên mặt phẳng tọa độ, lấy các điểm \({A_1},{A_2},...\) sao cho với mỗi số nguyên dương n, điểm \({A_n}\) có tọa độ là \((n,{u_n})\). Chứng minh rằng tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên một đường thẳng. Hãy cho biết phương trình của đường thẳng đó.
Giải
Từ giả thiết của bài toán suy ra \({u_n} = 2 + (n - 1).( - 3) = - 3n + 5\) với mọi \(n \ge 1.\) Vì thế với mỗi \(n \ge 1\), điểm \({A_n}(n,{u_n})\) nằm trên đường thẳng \(y = - 3x + 5\). Nới một cách khác:
Tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên đường thẳng \(y = - 3x + 5\).
sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục