Tính diện tích của một hình thang vuông, biết hai đáy có độ dài là 2cm và 4cm, góc tạo bởi một cạnh bên và đáy lớn có số đo bằng 450.
Giải:
Xét hình thang vuông ABCD có: \(\widehat A = \widehat D = {90^0};\widehat C = {45^0}\)
Kẻ BE ⊥ CD
Trong tam giác vuông BEC có \(\widehat {BEC} = {90^0}\)
\(\widehat C = 45^\circ \Rightarrow \)∆ BEC vuông cân tại E
⇒ BE = EC
Hình thang ABED có hai cạnh bên AD // BE (vì cùng vuông góc với DC)
⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm
\({S_{ABCD}} = {1 \over 2}.BE\left( {AB + CD} \right) = {1 \over 2}.2.\left( {2 + 4} \right) = 6(c{m^2})\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục