Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho \(BE = {1 \over 3}BC\). Gọi K là giao điểm của AE và CD. Chứng minh rằng DK = KC.
Giải
Trong ∆ACD ta có CB là đường trung tuyến kẻ từ đỉnh C.
E ∈ BC và \(BE = {1 \over 3}BC\) (gt)
Suy ra: \(CE = {2 \over 3}CB\) nên E là trọng tâm của ∆ACD.
Do đó AK là đường trung tuyến của ∆ACD xuất phát từ đỉnh A nên K là trung điểm của CD.
Vậy KD = KC.
Sachbaitap.com
>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục