Cho hình:
Biết:
\(AB = 9cm,AC = 6,4cm\)
\(AN = 3,6cm,\widehat {AN{\rm{D}}} = 90^\circ ,\widehat {DAN} = 34^\circ \)
Hãy tính:
a) CN;
b) \(\widehat {ABN}\);
c) \(\widehat {CAN}\);
d) AD.
Gợi ý làm bài:
a) Áp dụng định lí Pi-ta-go vào tam giác vuông ANC, ta có:
\(\eqalign{
& A{C^2} = A{N^2} + N{C^2} \cr
& \Rightarrow N{C^2} = A{C^2} - A{N^2} \cr
& \Rightarrow NC = \sqrt {A{C^2} - A{N^2}} = \sqrt {6,{4^2} - 3,{6^2}} = \sqrt {28} \cr
& \Rightarrow NC = 5,2915\left( {cm} \right) \cr} \)
b) Tam giác ANB vuông tại N nên ta có:
\(\sin \widehat {ABN} = {{AN} \over {AB}} = {{3,6} \over 9} = 0,4\)
\( \Rightarrow \widehat {ABN} \approx 23^\circ 35'\)
c) Tam giác ANC vuông tại N nên ta có:
\(\eqalign{
& \cos \widehat {CAN} = {{AN} \over {AC}} \cr
& \Rightarrow {{3,6} \over {6,4}} = {9 \over {16}} = 0,5625 \cr
& \Rightarrow \widehat {CAN} \approx 55^\circ 46' \cr} \)
d) Tam giác AND vuông tại N nên ta có:
\(\eqalign{
& \cos \widehat {NAD} = {{AN} \over {AD}} \cr
& \Rightarrow AD = {{AN} \over {\cos \widehat {NAD}}} \cr
& = {{3,6} \over {\cos 34^\circ }} \approx 4,3424 \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục