Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.36 trang 139 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm các số hạng đầu và công bội của một cấp số nhân lùi vô hạn, biết rằng

Tìm các số hạng đầu và công bội của một cấp số nhân lùi vô hạn, biết rằng tổng của cấp số nhân đó là 12, hiệu của số hạng đầu và số hạng thứ hai là \({3 \over 4}\) và số hạng đầu là một số dương.

Giải

Gọi \({u_1}\) là số hạng đầu, q là công bội và S là tổng của cấp số nhân đã cho.

Khi đó \(S = {{{u_1}} \over {1 - q}}\). Theo giả thiết, ta có

\(\left\{ \matrix{
{{{u_1}} \over {1 - q}} = 12 \hfill \cr
{u_1}\left( {1 - q} \right) = {3 \over 4} \hfill \cr
{u_1} > 0. \hfill \cr} \right.\)

                                   \(S = {{{u_1}} \over {1 - q}}.\)

Nhân hai phương trình đầu của hệ trên với nhau, ta được

                                    \(u_1^2 = 9.\)

Vì \({u_1} > 0\) nên từ đó ta có \({u_1} = 3.\)Thay vào phương trình thứ hai của hệ, ta được

                        \(3\left( {1 - q} \right) = {3 \over 4} \Leftrightarrow q = {3 \over 4}.\)

Vậy cấp số nhân đã cho có số hạng đầu \({u_1} = 3\) và công bội \(q = {3 \over 4}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan