Tìm các số hạng đầu và công bội của một cấp số nhân lùi vô hạn, biết rằng tổng của cấp số nhân đó là 12, hiệu của số hạng đầu và số hạng thứ hai là \({3 \over 4}\) và số hạng đầu là một số dương.
Giải
Gọi \({u_1}\) là số hạng đầu, q là công bội và S là tổng của cấp số nhân đã cho.
Khi đó \(S = {{{u_1}} \over {1 - q}}\). Theo giả thiết, ta có
\(\left\{ \matrix{
{{{u_1}} \over {1 - q}} = 12 \hfill \cr
{u_1}\left( {1 - q} \right) = {3 \over 4} \hfill \cr
{u_1} > 0. \hfill \cr} \right.\)
\(S = {{{u_1}} \over {1 - q}}.\)
Nhân hai phương trình đầu của hệ trên với nhau, ta được
\(u_1^2 = 9.\)
Vì \({u_1} > 0\) nên từ đó ta có \({u_1} = 3.\)Thay vào phương trình thứ hai của hệ, ta được
\(3\left( {1 - q} \right) = {3 \over 4} \Leftrightarrow q = {3 \over 4}.\)
Vậy cấp số nhân đã cho có số hạng đầu \({u_1} = 3\) và công bội \(q = {3 \over 4}.\)
Sachbaitap.com
>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục