Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.39 trang 140 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Chứng minh rằng các giới hạn sau không tồn tại

Chứng minh rằng các giới hạn sau không tồn tại

a) \(\mathop {\lim }\limits_{x \to  + \infty } \sin 2x\)                          b) \(\mathop {\lim }\limits_{x \to  + \infty } \cos 3x\)

c) \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over {2x}}\)                            d) \(\mathop {\lim }\limits_{x \to 0} \sin {2 \over x}.\)

Hướng dẫn. a) Lấy hai dãy số \(({x_n})\) và \((x{'_n})\) với \({x_n} = n\pi ,x{'_n} = n\pi  + {\pi  \over 4}.\)

Tìm \(\lim {x_n},\lim x{'_n},\lim f({x_n}),\lim f(x{'_n}).\)

c) Chọn dãy số \(({x_n})\) sao cho \({1 \over {2{x_n}}} = n\pi \,hay\,{x_n} = {1 \over {2n\pi }}\) Tìm \(\lim {x_n}\) và \(\lim f({x_n}).\)

Giải

a) Lấy hai dãy số \(({x_n})\) và \((x{'_n})\)

   \({x_n} = n\pi ,x{'_n} = n\pi  + {\pi  \over 4}\) (như trong hướng dẫn).

Khi đó \(\lim {x_n} =  + \infty \)  và \(\lim x{'_n} =  + \infty \);

            \(\lim f({x_n}) = limsin2{x_n} = \lim \sin 2n\pi  = 0\)  và

            \(\lim f(x{'_n}) = limsin2x{'_n} = \lim \sin \left( {2n\pi  + {\pi  \over 2}} \right) = 1.\)

Vì \(\lim f\left( {{x_n}} \right) \ne \lim f\left( {x{'_n}} \right)\)  nên không tồn tại \(\mathop {\lim }\limits_{x \to  + \infty } \sin 2x.\)

Cách giải khác. Lấy dãy số \(({x_n})\) với

                                    \({x_n} = {{n\pi } \over 2} + {\pi  \over 4},\)

Ta có \(\lim {x_n} =  + \infty \) và

\(f\left( {{x_n}} \right) = \sin 2{x_n} = \sin \left( {n\pi + {\pi \over 2}} \right) = \left\{ \matrix{
1\text{ với n chẵn} \hfill \cr
- 1\text{ với n lẻ} \hfill \cr} \right.\)

Dãy số \(\left( {f\left( {{x_n}} \right)} \right) = \left( {\sin 2{x_n}} \right)\) không có giới hạn. Do đó không tồn tại \(\mathop {\lim }\limits_{x \to  + \infty } \sin 2x.\)

b) Làm tương tự như câu a) không tồn tại \(\mathop {\lim }\limits_{x \to  + \infty } \cos 3x\)

c) Chọn dãy \(({x_n})\) sao cho
                        \({1 \over {2{x_n}}} = n\pi  \Leftrightarrow {x_n} = {1 \over {2n\pi }}.\)     

Khi đó \(\lim {x_n} = 0\)  và

\(f\left( {{x_n}} \right) = \cos {1 \over {2{x_n}}} = \cos n\pi = \left\{ \matrix{
1\text{ với n chẵn}\hfill \cr
- 1\text{ với n lẻ}  \hfill \cr} \right.\)

Dãy số \(\left( {f\left( {{x_n}} \right)} \right) = \left( {\cos {1 \over {2{x_n}}}} \right)\)  không có giới hạn. Do đó không tồn tại

\(\mathop {\lim }\limits_{x \to 0} \cos {1 \over {2x}}\);

d) Tương tự câu c, không tồn tại \(\mathop {\lim }\limits_{x \to 0} \sin {2 \over x}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan