Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.54 trang 111 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 4.54 trang 111 SBT Đại số 10 Nâng cao

 Xét dấu của các biểu thức:

a. \(\dfrac{{x - 7}}{{4{{ {x}}^2} - 19{ {x + 12}}}}\)

b. \(\dfrac{{11{ {x}} + 3}}{{ - {x^2} + 5{ {x}} + 7}}\)

c. \(\dfrac{{3{ {x}} - 2}}{{{x^3} - 3{{ {x}}^2} + 2}}\)

d. \(\dfrac{{{x^2} + 4{ {x}} - 12}}{{\sqrt {6{{ {x}}^2}}  + 3{ {x}} + \sqrt 2 }}\)

e. \(\dfrac{{{x^2} - 3{ {x}} - 2}}{{ - {x^2} + x - 1}}\)            

f.  \(\dfrac{{{x^3} - 5{ {x}} + 4}}{{{x^4} - 4{x^3} + 8{ {x}} - 5}}\)

Giải:

a. Đặt \(A\left( x \right) = \dfrac{{x - 7}}{{4{x^2} - 19x + 12}}.\) Tam thức \(4{x^2} - 19x + 12\) có hai nghiệm \({x_1} = \dfrac{3}{4},{x^2} = 4.\)

Lập bảng xét dấu \(A(x)\) :

Từ bảng xét dấu ta thu được \(A(x) > 0\) trong các khoảng \(\left( {\dfrac{3}{4};4} \right)\) và \(\left( {7; + \infty } \right)\) và \(A(x) < 0\) trong các khoảng \(\left( { - \infty ;\dfrac{3}{4}} \right)\) và \(\,\left( {4;7} \right).\)

b. Đặt \(B\left( x \right) = \dfrac{{11x + 3}}{{ - {x^2} + 5x - 7}}.\) Tam thức \( - {x^2} + 5x - 7\) có a = -1 < 0 và biệt thức \(∆ = -3 < 0\) nên tam thức luôn luôn âm với mọi \(x\). Suy ra \(B(x) > 0\) \( \Leftrightarrow 11x + 3 < 0 \Leftrightarrow x <  - \dfrac{3}{{11}}\) và \(B\left( x \right) < 0 \Leftrightarrow 11x + 3 > 0 \Leftrightarrow x >  - \dfrac{3}{{11}}.\)

c. Đặt \(C\left( x \right) = \dfrac{{3x - 2}}{{{x^3} - 3{x^2} + 2}} = \dfrac{{3x - 2}}{{\left( {x - 1} \right)\left( {{x^2} - 2x - 2} \right)}}.\)

Lập bảng xét dấu (HS tự lập), ta thu được :

\(C(x) > 0\) trong các khoảng \(\left( { - \infty ;1 - \sqrt 3 } \right),\left( {\dfrac{2}{3};1} \right)\) và \(\,\left( {1 + \sqrt 3 ; + \infty } \right).\)

\(C(x) < 0\) trong các khoảng \(\left( {1 - \sqrt 3 ;\dfrac{2}{3}} \right)\) và \(\,\left( {1;1 + \sqrt 3 } \right).\)

d. Đặt \(D\left( x \right) = \dfrac{{{x^2} + 4x - 12}}{{\sqrt 6 {x^2} + 3x + \sqrt 2 }}.\)

Ta thấy tam thức \(\sqrt 6 {x^2} + 3x + \sqrt 2  > 0\) với mọi \(x\), nên dấu của \(D(x)\) cùng dấu với dấu của tam thức \({x^2} + 4x - 12.\) Suy ra \(D(x) > 0\) trong các khoảng \(\left( { - \infty ; - 6} \right)\) và \(\,\left( {2; + \infty } \right),\) \(D(x) < 0\) trong khoảng \((-6 ; 2)\).

e. Đặt \(E\left( x \right) = \dfrac{{{x^2} - 3x - 2}}{{ - {x^2} + x - 1}}.\) Ta thấy \( - {x^2} + x - 1 < 0\) với mọi \(x\), nên \(E(x)\) trái dấu với dấu tam thức \({x^2} - 3x - 2.\)

Suy ra : \(E(x) > 0\) trong khoảng \(\left( {\dfrac{{3 - \sqrt {17} }}{2};\dfrac{{3 + \sqrt {17} }}{2}} \right).\)

\(E(x) < 0\) trong các khoảng  \(\left( { - \infty ;\dfrac{{3 - \sqrt {17} }}{2}} \right)\) và \(\,\left( {\dfrac{{3 + \sqrt {17} }}{2}; + \infty } \right).\)

f. Đặt \(F\left( x \right) = \dfrac{{{x^3} - 5x + 4}}{{{x^4} - 4{x^3} + 8x - 5}}\)

\(= \dfrac{{\left( {x - 1} \right)\left( {{x^2} + x - 4} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {{x^2} - 2x - 5} \right)}}.\)

Lập bảng xét dấu (Học sinh tự lập) ta thu được :

\(F(x) > 0\) trong các khoảng

\(\left( {\dfrac{{ - 1 - \sqrt {17} }}{2};1 - \sqrt 6 } \right),\left( {1;\dfrac{{ - 1 + \sqrt {17} }}{2}} \right)\) và \(\,\left( {1 + \sqrt 6 ; + \infty } \right).\)

\(F(x) < 0\) trong các khoảng

\(\left( { - \infty ;\dfrac{{ - 1 - \sqrt {17} }}{2}} \right),\) \(\left( {1 - \sqrt 6 ;1} \right),\) \(\left( {\dfrac{{ - 1 + \sqrt {17} }}{2};1 + \sqrt 6 } \right).\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan