Gọi (C) là đồ thị của hàm số
\(y = f\left( x \right) =- {x^4} + 2{x^2} + x\)
Chứng minh rằng, tiếp tuyến của (C) tại điểm A(-1;0) cũng là tiếp tuyến của (C) tại một điểm khác. Tìm các tọa độ của tiếp điểm đó.
Giải
Trước hết ta hãy viết phương trình tiếp tuyến của (C) tại tiếp điểm \(A\left( { - 1;0} \right)\)
Ta có
\(f'\left( x \right) = - 4{x^3} + 4x + 1\left( {\forall x \in R} \right).\)
Với \({x_0} = - 1,f\left( {{x_0}} \right) = 0\) thì \(f'\left( {{x_0}} \right) = 1\), do đó phương trình tiếp tuyến phải tìm là
\(y = x + 1.\,\,\,\,(T)\)
Để tiếp tuyến (T) cũng là một tiếp tuyến của (C) tại một điểm \(B\left( {{x_1};f\left( {{x_1}} \right)} \right)\) khác điểm \(A\left( { - 1;0} \right)\) thì điều kiện cần và đủ là (T) phải cát đồ thị (C) tại B (tức là ta phải có \(f\left( x \right) = x + 1\) ) đồng thời hệ số góc của tiếp tuyến tại B phải bằng hệ số góc của tiếp tuyến (T) (tức là ta phải có \(f'\left( x \right) = 1\) ). Tóm lại ta phải giải hệ thống phương trình
\(\left\{ \matrix{f\left( x \right) = x + 1 \hfill \cr f'\left( x \right) = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{- {x^4} + 2{x^2} + x = x + 1 \hfill \cr- 4{x^3} + 4x + 1 = 1 \hfill \cr} \right.\,\,\,\,\,\,\left( * \right)\)
Nghiệm của hệ thống này chính là hoành độ các tiếp tuyến của (T) với đồ thị (C).
Giải hệ (*), ta được \(x = \pm 1\)
Với \({x_0} = - 1\), ta được tiếp điểm \(A\left( { - 1;0} \right)\)
Với \({x_0} = 1\), ta được tiếp điểm \(B\left( {1;2} \right)\)
Vậy đường thẳng \(y = x + 1\) vừa là tiếp tuyến của (C) tại điểm \(A\left( { - 1;0} \right)\), vừa là tiếp tuyến của (C) tại tiếp điểm \(B\left( {1;2} \right) \ne A\left( { - 1;0} \right).\)
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục