Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 60. Trang 115 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.5 trên 19 phiếu

Hãy tính: a) PT; b) Diện tích tam giác PQR.

Cho hình:

Biết:

\(\widehat {QPT} = 18^\circ \),

\(\widehat {PTQ} = 150^\circ \),

     QT = 8cm,

     TR = 5cm.

Hãy tính:

a)   PT;

b)   Diện tích tam giác PQR.

Gợi ý làm bài:


a) Kẻ \(QS \bot PR\)

Ta có: \(\widehat {QTS} = 180^\circ  - \widehat {QTP} = 180^\circ  - 150^\circ  = 30^\circ \)

Trong tam giác vuông QST, ta có:   

\(QS = QT.\sin \widehat {QTS} = 8.\sin 30^\circ  = 4\left( {cm} \right)\)

\(TS = QT.c{\rm{os}}\widehat {QTS} = 8.c{\rm{os30}}^\circ  \approx 6,928\left( {cm} \right)\)

Trong tam giác vuông QSP, ta có:

\(SP = QS.\cot g\widehat {QPS} = 4.\cot g18^\circ  = 12,311\left( {cm} \right)\)

\(PT = SP - TS \approx 12,311 - 6,928 = 5,383\left( {cm} \right)\)

b) Ta có: 

\({S_{\Delta QPR}} = {1 \over 2}.QS.PR = {1 \over 2}.QS.(PT + TR)\)

\( \approx {1 \over 2}.4.(5,383 + 5) = 2.10,383 = 20,766\left( {c{m^2}} \right)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan