Cho hình 76, trong đó hai đường tròn (O) và (O’) tiếp xúc nhau tại A. Chứng minh rằng các tiếp tuyến Bx và Cy song song với nhau.
Giải:
Ta có: O, A, O’ thẳng hàng
C, A, B thẳng hàng
Suy ra: \(\widehat {OAB} = \widehat {OBA}\) (đối đỉnh) (1)
Tam giác AOB cân tại O
Suy ra: \(\widehat {OAB} = \widehat {OBA}\) (2)
Tam giác AO’C cân tại O’
Suy ra: \(\widehat {O'AC} = \widehat {O'CA}\) (3)
Từ (1), (2) và (3) suy ra: \(\widehat {OBA} = \widehat {O'CA}\)
Suy ra OB // O’C (vì có cặp góc so le trong bằng nhau)
Lại có: Bx ⊥ OB (tính chất tiếp tuyến)
Suy ra: Bx ⊥O’C
Mà: Cy ⊥ O’C ( tính chất tiếp tuyến)
Suy ra: Bx // Cy.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục