Cho tam giác ABC. Điểm M nằm trên đường phân giác của góc ngoài đỉnh C (M khác C). Chứng minh rằng AC + CB < AM + MB.
Giải:
Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên ∆ ACE cân tại C có CM là đường trung trực (tính chất tam giác cân)
⇒ MA = ME ( tính chất đường trung trực)
Ta có: AC + BC = BC + CE = BE (1)
MA + MB = MB + ME (2)
Trong ∆ MBE ta có: BE < MB + ME ( bất đẳng thức tam giác) (3)
Từ (1), (2) và (3) suy ra: AC + BC < MA + MB
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục