Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 74 trang 61 Sách bài tập (SBT) Toán 8 tập 2

Bình chọn:
4.7 trên 6 phiếu

Giải các bất phương trình và biểu diễn tập nghiệm của chúng trên trục số:

Giải các bất phương trình và biểu diễn tập nghiệm của chúng trên trục số:

a. \(2\left( {3x - 1} \right) - 2x < 2x + 1\)

b. \(4x - 8 \ge 3\left( {3x - 2} \right) + 4 - 2x\)

Giải:

a. Ta có:

\(\eqalign{  & 2\left( {3x - 1} \right) - 2x < 2x + 1  \cr  &  \Leftrightarrow 6x - 2 - 2x < 2x + 1  \cr  &  \Leftrightarrow 6x - 2x - 2x < 1 + 2  \cr  &  \Leftrightarrow 2x < 3 \Leftrightarrow x < {3 \over 2} \cr} \)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x < {3 \over 2}} \right\}\)

 

b. Ta có:

\(\eqalign{  & 4x - 8 \ge 3\left( {3x - 2} \right) + 4 - 2x  \cr  &  \Leftrightarrow 4x - 8 \ge 9x - 6 + 4 - 2x  \cr  &  \Leftrightarrow 4x - 9x + 2x \ge  - 6 + 4 + 8  \cr  &  \Leftrightarrow  - 3x \ge 6 \Leftrightarrow x \le  - 2 \cr} \)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x \le  - 2} \right\}\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan