Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 1;b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
Giải:
Ta có: a chia cho 3 dư 1=> a=3q+1 (q∈ N)
b chia cho 3 dư 2=> b=3k+2 (k∈ N)
a.b=(3q+1)(3k+2)=9qk+6q+3k+2
Vì 9⋮3=>9qk⋮3
6⋮3=>6q⋮3
3⋮3=>3k⋮3
Vậy a.b=9qk+6q+3k+2=3(3qk+2q+k)+2 chia cho 3 dư 2.
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục