Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 98 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Bình chọn:
4.2 trên 50 phiếu

Chứng minh rằng tam giác ABC là tam giác cân.

Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.

Giải

Kẻ \(MH \bot AB,MK \bot AC\)

Xét hai tam giác vuông AHM và AKM, ta có:

\(\eqalign{
& \widehat {AHM} = \widehat {AKM} = 90^\circ \cr
& \widehat {HAM} = \widehat {K{\rm{A}}M\left( {gt} \right)} \cr} \)

AM cạnh huyền chung  

\( \Rightarrow \) ∆AHM = ∆AKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

Xét hai tam giác vuông MHB và MKC, ta có:

                  \(\widehat {MHB} = \widehat {MKC} = 90^\circ \)

                  MH = MK (chứng minh trên)

                  MB = MC (gt)

Suy ra: ∆MHB = ∆MKC (cạnh huyền, cạnh góc vuông)

Suy ra: \(\widehat B = \widehat C\) (hai góc tương ứng)

Vậy ∆ABC cân tại A.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Bài viết liên quan