Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.24 trang 33 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho hai tam giác ABC và A'B'C'

Cho hai tam giác ABC và A'B'C'. Chứng minh rằng nếu \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) thì hai tam giác đó có cùng trọng tâm.

Gợi ý làm bài

Gọ G và G' lần lượt là trọng tâm của hai tam giác ABC và A'B'C'. Ta có:

\(\overrightarrow {AA'}  = \overrightarrow {AG}  + \overrightarrow {GG'}  + \overrightarrow {G'A'} \)

\(\overrightarrow {BB'}  = \overrightarrow {BG}  + \overrightarrow {GG'}  + \overrightarrow {G'B'} \)

\(\overrightarrow {CC'}  = \overrightarrow {CG}  + \overrightarrow {GG'}  + \overrightarrow {G'C'} \)

Cộng từng vế của ba đẳng thức trên ta được

\(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = 3\overrightarrow {GG'} \)

Do đó, nếu \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) thì \(\overrightarrow {GG'}  = \overrightarrow 0 \) hay G = G'

Chú ý: Từ chứng minh trên cũng suy ra rằng nếu hai tam giác ABC và A'B'C' có cùng trọng tâm thì \(\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = \overrightarrow 0 \) 

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan