Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.35 trang 34 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho tam giác ABC nội tiếp trong đường tròn tâm O, H là trực tâm của tam giác, D là điểm đối xứng của A qua O.

Cho tam giác ABC nội tiếp trong đường tròn tâm O, H là trực tâm của tam giác, D là điểm đối xứng của A qua O.

a) Chứng minh tứ giác HCDB là hình bình hành.

b) Chứng minh: \(\overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} \);

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} \);

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} \).

c) Gọi G là trọng tâm tam giác ABC.

Chứng minh \(\overrightarrow {OH}  = 3\overrightarrow {OG} \)

Từ đó có kết luận gì về ba điểm O, H, G?

Gợi ý làm bài

(Xem h.1.55)

a) Vì AD là đường kính của đường tròn tâm O nên \(BD \bot AB,DC \bot AC\)

Ta có \(CH \bot AB,BH \bot AC\) nên suy ra CH // BD và BH // DC.

Vậy tứ giác HCDB là hình bình hành.

b) Vì O là trung điểm của AD nên \(\overrightarrow {HA}  + \overrightarrow {HD}  = 2\overrightarrow {HO} (1)\)

Vì tứ giác HCDB là hình bình hành nên ta có \(\overrightarrow {HB}  + \overrightarrow {HC}  = \overrightarrow {HD} \). 

Vậy từ (1) suy ra:

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} (2)\)

Theo quy tắc ba điểm, từ (2) suy ra 

\(\overrightarrow {HO}  + \overrightarrow {OA}  + \overrightarrow {HO}  + \overrightarrow {OB}  + \overrightarrow {HO}  + \overrightarrow {OC}  = 2\overrightarrow {HO} \)

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} (3)\)

c) G là trọng tâm của tam giác ABC.

Ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OG} \)

Từ (3) suy ra \(\overrightarrow {OH}  = 3\overrightarrow {OG} \)

Vậy ba điểm O, H, G thẳng hàng.

Trong một tam giác trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O thẳng hàng.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan