Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có đỉnh A(2;-1), phương trình một đường chéo là x - 7y + 15 = 0 và độ dài cạnh AB = \(3\sqrt 2 \). Tìm tọa độ các đỉnh A, C, D biết ${y_B}$ là số nguyên
Gợi ý làm bài
(Xem hình 3.42)
Do tọa độ A không thỏa mãn phương trình đường thẳng x - 7y + 15 = 0 nên phương trình đường chéo BD là : x - 7y + 15 = 0, tọa độ điểm B là B(7t - 15;t).
Ta có :
\(AB = 3\sqrt 2 \Leftrightarrow {\left( {7t - 17} \right)^2} + {\left( {t + 1} \right)^2} = 18\)
\(\eqalign{
& \Leftrightarrow 50{t^2} - 236t + 272 = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 2 \hfill \cr
t = {{68} \over {25}}\,\,\,(*) \hfill \cr} \right. \cr} \)
( (*) loại)
Vậy B(-1 ; 2)
Ta có \({\overrightarrow n _{AD}} = \overrightarrow {AB} = ( - 3;3) = - 3(1; - 1)\)
Phương trình đường thẳng AD là :
\(\eqalign{
& 1.(x - 2) - 1.(y + 1) = 0 \cr
& \Leftrightarrow x - y - 3 = 0. \cr} \)
Tọa độ điểm D là nghiệm của hệ:
\(\left\{ \matrix{
x - y - 3 = 0 \hfill \cr
x - 7y + 15 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 6 \hfill \cr
y = 3. \hfill \cr} \right.\)
Vậy D(6 ; 3).
Ta có AC và BD cắt nhau tại trung điểm I.
Suy ra:
\(\eqalign{
& \left\{ \matrix{
{{{x_C} + {x_A}} \over 2} = {{{x_B} + {x_D}} \over 2} = {5 \over 2} \hfill \cr
{{{y_C} + {y_A}} \over 2} = {{{y_B} + {y_D}} \over 2} = {5 \over 2} \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
{x_C} = 3 \hfill \cr
{y_C} = 6. \hfill \cr} \right. \cr} \)
Vậy C(3 ; 6).
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục