Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 24 trang 218 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Rút gọn

Rút gọn

a) \({{1 + \cos a} \over {1 - \cos a}}{\tan ^2}{a \over 2} - {\cos ^2}a\)

b) \(4{\cos ^4}a - 2\cos 2a - {1 \over 2}\cos 4a\)

c) \({\sin ^2}a\left( {1 + {1 \over {\sin a}} + \cot a} \right)\left( {1 - {1 \over {\sin a}} + \cot a} \right)\)

d) \({{\cos 2a} \over {{{\cos }^4}a - {{\sin }^4}a}} - {{{{\cos }^4}a + {{\sin }^4}a} \over {1 - {1 \over 2}{{\sin }^2}2a}}\)

Gợi ý làm bài

a) 

\(\eqalign{
& {{1 + \cos a} \over {1 - \cos a}}{\tan ^2}{a \over 2} - {\cos ^2}a \cr
& = {{2{{\cos }^2}{a \over 2}} \over {2{{\sin }^2}{a \over 2}}}{\tan ^2}{a \over 2} - {\cos ^2}a = {\sin ^2}a \cr} \)

b) \(4{\cos ^4}a - 2\cos 2a - {1 \over 2}\cos 4a\)

\( = 4{\cos ^4}a - 2(2{\cos ^2}a - 1) - {1 \over 2}(2{\cos ^2}2a - 1)\)

\( = 4{\cos ^4}a - 4{\cos ^2}a + 2 - {(2{\cos ^2}a - 1)^2} + {1 \over 2}\)

\( = 4{\cos ^4}a - 4{\cos ^2}a + {5 \over 2} - 4{\cos ^4}a + 4{\cos ^2}a - 1 = {3 \over 2}\)

c) \({\sin ^2}a(1 + {1 \over {\sin a}} + \cot a)(1 - {1 \over {\sin a}} + \cot a)\)

\(\eqalign{
& = {\sin ^2}a\left[ {{{(1 + cota)}^2} - {1 \over {{{\sin }^2}a}}} \right] \cr
& = {\sin ^2}a(1 + {\cot ^2}a + 2\cot a) - 1 \cr} \)

\(\eqalign{
& = {\sin ^2}a + {\cos ^2}a + 2{\sin ^2}a{{\cos a} \over {\sin a}} - 1 \cr
& = \sin 2a \cr} \)

d) \({{\cos 2a} \over {{{\cos }^4}a - {{\sin }^4}a}} - {{{{\cos }^4}a + {{\sin }^4}a} \over {1 - {1 \over 2}{{\sin }^2}2a}}\)

\(= {{{{\cos }^2}a - {{\sin }^2}a} \over {({{\cos }^2}a + {{\sin }^2}a)({{\cos }^2}a - {{\sin }^2}a)}} - {{{{\cos }^4}a + {{\sin }^4}a} \over {1 - {1 \over 2}{{(2\sin a\cos a)}^2}}}\)

\( = 1 - {{{{\cos }^4}a + {{\sin }^4}a} \over {{{\sin }^2}a - si{n^2}aco{s^2}a + {{\cos }^2}a - {{\sin }^2}a{{\cos }^2}a}}\)

\( = 1 - {{{{\cos }^4}a + {{\sin }^4}a} \over {{{\sin }^2}a(1 - co{s^2}a) + {{\cos }^2}a(1 - {{\sin }^2}a)}} = 0\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan