Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 67 trang 125 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Vẽ trên cùng một hệ trục tọa độ đồ thị của các hàm số sau

a) Vẽ trên cùng một hệ trục tọa độ đồ thị của các hàm số sau

\(y = f(x) = \left| {x + 3} \right| - 1\);

\(y = g(x) = \left| {2x - m} \right|\); trong đó m là tham số

Xác định hoành độ các giao điểm của mỗi đồ thị với trục hoành.

b) Tìm các giá trị của tham số m để bất phương trình sau nghiệm đúng với mọi giá trị của x

\(\left| {2x - m} \right| > \left| {x + 3} \right| - 1\)

Gợi ý làm bài

a) Đồ thị hàm số y = f(x) là đường gấp khúcu’Eu, cắt Ox tại A(-4; 0) và B(-2;0).

Đồ thị hàm số y = g(x) là đường gấp khúc v’Cv, cắt Ox tại \(C({m \over 2};0)\)

Khi m thay đổi, điểm C chạy trên Ox; tia Cv luông song song với đường thẳng y = 2x; tia Cv’ luôn song song với đường thẳng y = -2x.

b) Bất phương trình đã cho đúng với mọi x khi và chỉ khi đồ thị của hàm số y = g(x) nằm hoàn toàn phía trên đồ thị của hàm số y = f(x) hay C nằm giữa A và B nghĩa là \( - 4 < {m \over 2} <  - 2 \Leftrightarrow  - 8 < m <  - 4\)

Đáp số: \( - 8 < m <  - 4\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan