Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 15 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
4.1 trên 47 phiếu

Chứng minh

Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \({a^2}\) chia cho 5 dư 1.

Giải:

Số tự nhiên a chia cho 5 dư 4 ⟹a=5k+4 (k∈N)

Ta có: \(\eqalign{  & {a^2} = {\left( {5k + 4} \right)^2} = 25{k^2} + 40k + 16 = 25{k^2} + 40k + 15 + 1  \cr  &  \cr} \)   

                 \( = 5\left( {5{k^2} + 8k + 3} \right) + 1\)                

Mà \( 5\left( {5{k^2} + 8k + 3} \right) \; \vdots\; 5\) .

Vậy \({a^2} = {\left( {5k + 4} \right)^2}\) chia cho 5 dư 1

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.

Bài viết liên quan