Hình thang cân ABCD có AB// CD, AB < CD. Kẻ các đường cao AH, BK. Chứng minh rằng DH = CK.
Giải:
Xét hai tam giác vuông AHD và BKC:
\(\widehat {AHD} = \widehat {BKC} = {90^0}\)
AD=BC (tính chất hình thang cân)
\(\widehat C = \widehat D\) (tính chất hình thang cân)
Do đó: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn)
\( \Rightarrow DH = CK\) (hai cạnh tương ứng)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục