Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 51 trang 166 Sách bài tập (SBT) Toán 8 tập 1

Bình chọn:
4 trên 9 phiếu

Cho tam giác ABC với ba đường cao AA’, BB’, CC’. Gọi H là trực tâm của tam giác đó.

Cho tam giác ABC với ba đường cao AA’, BB’, CC’. Gọi H là trực tâm của tam giác đó.

Chứng minh rằng \({{HA'} \over {AA'}} + {{HB'} \over {BB'}} + {{HC'} \over {CC'}} = 1\)

Giải:                                                                          

\(\eqalign{  & {S_{HBC}} + {S_{HAC}} + {S_{HAB}} = {S_{ABC}}  \cr  &  \Rightarrow {{{S_{HBC}}} \over {{S_{ABC}}}} + {{{S_{HABC}}} \over {{S_{ABC}}}} + {{{S_{HAB}}} \over {{S_{ABC}}}} = 1 \cr} \)

Suy ra: \({{HA'.BC} \over {AA'.BC}} + {{HB'.AC} \over {BB'.AC}} + {{HC'.AB} \over {CC'.AB}} = 1\)

\( \Rightarrow {{HA'} \over {AA'}} + {{HB'} \over {BB'}} + {{HC'} \over {CC'}} = 1\)

Bài tiếp theo

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan