Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Giải
∆ABC cân tại A, đường phân giác của góc ở đỉnh cũng là đường cao.
Do đó:
\(\eqalign{
& A{\rm{D}} \bot BC \cr
& CH \bot AB\left( {gt} \right) \cr} \)
Trong ∆ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC, do đó BD là đường cao xuất phát từ đỉnh B đến cạnh đối diện AC.
Vậy \(B{\rm{D}} \bot AC\).
Sachbaitap.com
>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục