Chứng minh:
a. \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} - 1\)
b. \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) = {x^4} - {y^4}\)
Giải:
a. Biến đổi vế trái: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} + {x^2} + x - {x^2} - x - 1 = {x^3} - 1\)
Vế trái bằng vế phải vậy đẳng thức được chứng minh
b. Biến đổi vế trái: \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) = {x^4} + {x^3}y + {x^2}{y^2} + x{y^3} - {x^3}y - {x^2}{y^2} - x{y^3} - {y^4} = {x^4} - {y^4}\)
Vế trái bằng vế phải vậy đẳng thức được chứng minh.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục