Hai đoạn thẳng AC, BD vuông góc với nhau và cắt nhau tại trung điểm của mỗi đoạn thẳng. Tính các độ dài AB, BC, CD, DA biết AC = 12cm, BD = 16cm.
Giải
Gọi I là giao điểm của AC và BD.
Ta có:
\(\begin{gathered}
IA = IC = \frac{{AC}}{2} = \frac{{12}}{2} = 6(cm) \hfill \\
IB = ID = \frac{{BD}}{2} = \frac{{16}}{2} = 8\left( {cm} \right) \hfill \\
\end{gathered} \)
Áp dụng định lý Pytago vào tam giác vuông AIB, ta có:
\(\eqalign{
& A{B^2} = I{A^2} + I{B^2} \cr
& A{B^2} = {6^2} + {8^2} = 36 + 64 = 100 \cr} \)
Vậy \(AB = 10\) (cm)
Mặt khác: ∆IAB = ∆IAD = ∆ICB = ∆ICD (c.g.c)
Suy ra: \(AD = BC = CD = AB = 10\) (cm)
Sachbaitap.com
>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục