Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 94 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1

Bình chọn:
3.8 trên 56 phiếu

Chứng minh rằng AK là tia phân giác của góc A.

Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

Giải

Xét hai tam giác vuông ADB và AEC, ta có:

           \(\widehat {A{\rm{D}}B} = \widehat {A{\rm{E}}C} = 90^\circ \)

           AB = AC (Vì tam giác ABC cân tại A)

           \(\widehat {A} \) chung

\( \Rightarrow \) ∆ADB = ∆AEC (cạnh huyền, góc nhọn)

Suy ra: AD = AE (hai cạnh tương ứng)

Xét hai tam giác vuông ADK và AEK, ta có:

              \(\widehat {A{\rm{D}}K} = \widehat {A{\rm{E}}K} = 90^\circ \)

              AD  = AE (chứng minh trên)

              AK cạnh chung

Suy ra: ∆ADK = ∆AEK (cạnh huyền, cạnh góc vuông)

Suy ra: \(\widehat {DAK} = \widehat {E{\rm{A}}K}\) (2 góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan