Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 11 trang 189 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Tính

Cho \(\tan \alpha  - 3\cot \alpha  = 6\) và \(\pi  < \alpha  < {{3\pi } \over 2}\). Tính

a) \(\sin \alpha  + \cos \alpha \)

b) \({{2\sin \alpha  - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\)

Gợi ý làm bài

Vì \(\pi  < \alpha  < {{3\pi } \over 2}\)

Nên \(\cos \alpha  < 0,\sin \alpha  < 0\) và \(\tan \alpha  > 0\)

Ta có: \(\tan \alpha  - 3\cot \alpha  = 6 \Leftrightarrow \tan \alpha  - {3 \over {\tan \alpha }} - 6 = 0\)

\( \Leftrightarrow {\tan ^2}\alpha  - 6\tan \alpha  - 3 = 0\)

Vì \(\tan \alpha  > 0\) nên \(\tan \alpha  = 3 + 2\sqrt 3\)

a) \({\rm{co}}{{\rm{s}}^2}\alpha  = {1 \over {1 + {{\tan }^2}\alpha }} = {1 \over {22 + 12\sqrt 3 }}\)

Suy ra \({\rm{cos}}\alpha {\rm{ =  - }}{1 \over {\sqrt {22 + 12\sqrt 3 } }},\sin \alpha  =  - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}.\)

Vậy \(\sin \alpha  + c{\rm{os}}\alpha {\rm{ =  - }}{{4 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }}\)

\(\eqalign{
& {{2\sin \alpha - \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (2 - {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos(1 + }}{1 \over {\sin \alpha }})}} \cr
& = \tan \alpha .{{2\cos \alpha - 1} \over {{\rm{cos}}\alpha }}.{{\sin \alpha } \over {\sin \alpha + 1}} = {\tan ^2}\alpha .{{2\cos \alpha - 1} \over {\sin \alpha + 1}} \cr} \)

\(\eqalign{
& {(3 + 2\sqrt 3 )^2}.{{ - {2 \over {\sqrt {22 + 12\sqrt 3 } }}} \over { - {{3 + 2\sqrt 3 } \over {\sqrt {22 + 12\sqrt 3 } }} + 1}} \cr
& = (21 + 12\sqrt 3 ).{{2 + \sqrt {22 + 12\sqrt 3 } } \over {3 + 2\sqrt 3 - \sqrt {22 + 12\sqrt 3 } }} \cr} \)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan