Chứng minh rằng với mọi \(\alpha \) làm cho biểu thức \({{\sin \alpha + \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\) có nghĩa, biểu thức đó không thể là một số âm.
Gợi ý làm bài
Ta có:
\(\eqalign{
& {{\sin \alpha + \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }} = {{\sin \alpha (1 + {1 \over {{\rm{cos}}\alpha }})} \over {{\rm{cos}}\alpha {\rm{(1 + }}{1 \over {\sin \alpha }})}} \cr
& = {{{{\sin }^2}\alpha (1 + c{\rm{os}}\alpha {\rm{)}}} \over {{\rm{co}}{{\rm{s}}^2}\alpha (1 + \sin \alpha )}} \cr} \)
Vì \(1 + c{\rm{os}}\alpha \ge {\rm{0}}\) và \(1 + \sin \alpha \ge {\rm{0}}\) cho nên biểu thức đã cho không thể có giá trị là một số âm.
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục