Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF= FC; BE cắt AM tại N. Chứng minh \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) là hai vec tơ đối nhau.
Gợi ý làm bài
(h. 1.41)
FM // BE vì FM là đường trung bình của tam giác CEB.
Ta có EA = EF . Vậy EN là đường trung bình của tam giác AFM. Vậy $\(\overrightarrow {NA} = - \overrightarrow {NM} \)
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục