Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.13 trang 23 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4.3 trên 4 phiếu

Cho tam giác ABC có trung tuyến AM.

Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF= FC; BE cắt AM tại N. Chứng minh \(\overrightarrow {NA} \) và \(\overrightarrow {NM} \) là hai vec tơ đối nhau.

Gợi ý làm bài

(h. 1.41)

FM // BE vì FM là đường trung bình của tam giác CEB.

Ta có EA = EF . Vậy EN là đường trung bình của tam giác AFM. Vậy $\(\overrightarrow {NA}  =  - \overrightarrow {NM} \)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan