Cho tam giác ABC. Chứng minh rằng nếu \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) thì G là trọng tâm của tam giác ABC.
Gợi ý làm bài
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GI} = \overrightarrow 0 \) (I là trung điểm của BC)
\( \Leftrightarrow \overrightarrow {GA} = - 2\overrightarrow {GI} \)
Từ đó suy ra ba điểm A, G, I thẳng hàng, trong đó GA = 2GI, G nằm giữa A và I.
Vậy G là trọng tâm của tam giác ABC.
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục