Cho tứ giác ABCD. Gọi M, N, P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh \(\overrightarrow {NP} = \overrightarrow {MQ} \) và \(\overrightarrow {PQ} = \overrightarrow {NM} \)
Gợi ý làm bài
(h. 1.35)
MN = PQ và MN // PQ
Vì chúng đều bằng \({1 \over 2}\) AC và đều song song với AC .
Vậy tứ giác MNPQ là hình bình hành nên ta có:
\(\overrightarrow {NP} = \overrightarrow {MQ} ,\overrightarrow {PQ} = \overrightarrow {NM} \)
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục