Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.33 trang 34 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho tứ giác ABCD.

Cho tứ giác ABCD. Các điểm M, N , P và Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh rằng hai tam giác ANP và CMQ có cùng trọng tâm.

Gợi ý làm bài

(h.1.53) 

Gọi G là trọng tâm của tam giác ANP.

Khi đó $\(\overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP}  = \overrightarrow 0 \)

Ta có:

\(\overrightarrow {GC}  + \overrightarrow {GM}  + \overrightarrow {GQ}  = \overrightarrow {GA}  + \overrightarrow {AC}  + \overrightarrow {GN}  + \overrightarrow {NM}  + \overrightarrow {GP}  + \overrightarrow {PQ} \)

\( = (\overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP} ) + \overrightarrow {AC}  + (\overrightarrow {NM}  + \overrightarrow {PQ} )\)

\(\overrightarrow { = AC}  + \overrightarrow {CA}  = \overrightarrow 0 \)

(Vì \(\overrightarrow {NM}  = {1 \over 2}\overrightarrow {CA} ,\overrightarrow {PQ}  = {1 \over 2}\overrightarrow {CA}\) nên \(\overrightarrow {NM}  + \overrightarrow {PQ}  = \overrightarrow {CA} \))

Vậy \(\overrightarrow {GC}  + \overrightarrow {GM}  + \overrightarrow {GQ}  = \overrightarrow 0 \)

Suy ra G là trọng tâm của tam giác CMQ.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan