Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.65 trang 47 Sách bài tập (SBT) Toán Hình học 10

Bình chọn:
4 trên 2 phiếu

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA.

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Gợi ý làm bài

Gọi G và G' lần lượt là trọng tâm các tam giác MPR và NQS. Ta có:

\(\eqalign{
& \overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} \cr
& = {1 \over 2}(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} + \overrightarrow {GE} + \overrightarrow {GF} ) \cr
& = \overrightarrow 0 \cr} \)

\(\eqalign{
& \overrightarrow {G'N} + \overrightarrow {G'Q} + \overrightarrow {G'S} \cr
& = {1 \over 2}(\overrightarrow {G'B} + \overrightarrow {G'C} + \overrightarrow {G'D} + \overrightarrow {G'E} + \overrightarrow {G'F} + \overrightarrow {G'A} ) \cr
& = \overrightarrow 0 \cr} \)

Do đó:

\(\eqalign{
& \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} + \overrightarrow {GE} + \overrightarrow {GF} \cr
& = \overrightarrow {G'B} + \overrightarrow {G'C} + \overrightarrow {G'D} + \overrightarrow {G'E} + \overrightarrow {G'F} + \overrightarrow {G'A} \cr} \)

\( =  > 6\overrightarrow {GG'}  = \overrightarrow 0  =  > G \equiv G'\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan