Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 20 trang 194 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Không sử dụng bảng số và máy tính, hãy tính

Không sử dụng bảng số và máy tính, hãy tính

a) \({\sin ^4}{\pi  \over {16}} + {\sin ^4}{{3\pi } \over {16}} + {\sin ^4}{{5\pi } \over {16}} + {\sin ^4}{{7\pi } \over {16}}\)

b) \(\cot 7,{5^0} + \tan 67,{5^0} - \tan 7,{5^0} - \cot 67,{5^0}\)

Gợi ý làm bài

a) \({\sin ^4}{\pi  \over {16}} + {\sin ^4}{{3\pi } \over {16}} + {\sin ^4}{{5\pi } \over {16}} + {\sin ^4}{{7\pi } \over {16}}\)

\( = {\left( {{{1 - \cos {\pi  \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{3\pi } \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{5\pi } \over 8}} \over 2}} \right)^2} + {\left( {{{1 - \cos {{7\pi } \over 8}} \over 2}} \right)^2}\)

\( = {1 \over 4}\left( {1 - 2\cos {\pi  \over 8} + {{\cos }^2}{\pi  \over 8} + 1 - 2\cos {{3\pi } \over 8} + {{\cos }^2}{{3\pi } \over 8} + 1 - 2\cos {{5\pi } \over 8} + {{\cos }^2}{{5\pi } \over 8} + 1 - 2\cos {{7\pi } \over 8} + {{\cos }^2}{{7\pi } \over 8}} \right)\)

\( = 1 - {1 \over 2}\left( {\cos {\pi  \over 8} + \cos {{3\pi } \over 8} + \cos {{5\pi } \over 8} + \cos {{7\pi } \over 8}} \right) + {1 \over 4}\left( {{{1 + \cos {\pi  \over 4}} \over 2} + {{1 + \cos {{3\pi } \over 4}} \over 2} + {{1 + \cos {{5\pi } \over 4}} \over 2} + {{1 + \cos {{7\pi } \over 4}} \over 2}} \right)$\)

=\(1 - {1 \over 2}\left( {\cos {\pi  \over 8} + \cos {{3\pi } \over 8} - \cos {{3\pi } \over 8} - \cos {\pi  \over 8}} \right) + {1 \over 8}\left( {4 + {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2} + {{\sqrt 2 } \over 2}} \right)\)

= \({3 \over 2}\)

b) \(\cot 7,{5^0} + \tan 67,{5^0} - \tan 7,{5^0} - \cot 67,{5^0}\)

= \({{\cos 7,{5^0}} \over {\sin 7,{5^0}}} - {{\sin 7,{5^0}} \over {\cos 7,{5^0}}} + {{\sin 67,{5^0}} \over {\cos 67,{5^0}}} - {{\cos 67,{5^0}} \over {\sin 67,{5^0}}}\)

= \({{{{\cos }^2}7,{5^0} - {{\sin }^2}7,{5^0}} \over {\sin 7,{5^0}\cos 7,{5^0}}} + {{{{\sin }^2}67,{5^0} - {{\cos }^2}67,{5^0}} \over {sin67,{5^0}\cos 67,{5^0}}}\)

= \(\eqalign{
& {{\cos {{15}^0}} \over {{1 \over 2}\sin {{15}^0}}} - {{\cos {{135}^0}} \over {{1 \over 2}\sin {{135}^0}}} \cr
& = {{2(\sin {{135}^0}\cos {{15}^0} - \cos {{135}^0}\sin {{15}^0})} \over {\sin {{15}^0}\sin {{135}^0}}} \cr} \)

= \({{\sin ({{135}^0} - {{15}^0})} \over {\sin ({{45}^0} - {{30}^0})\sin ({{180}^0} - {{45}^0})}}\)

= \({{2\sin {{120}^0}} \over {(\sin {{45}^0}\cos {{30}^0} - \cos {{45}^0}\sin {{30}^0})sin{{45}^0}}}\)

\(\eqalign{
& = {{\sqrt 3 } \over {{{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}).{{\sqrt 2 } \over 2}}} \cr
& = {{4\sqrt 3 } \over {\sqrt 3 - 1}} = 6 + 2\sqrt 3 \cr} $\)

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan