Cho tam giác ABC cân (AB = AC). Gọi H là trung điểm của cạnh BC, D là hình chiếu vuông góc của H trên cạnh AC, M là trung điểm của đoạn HD. Chứng minh rằng AM vuông góc với BD.
Gợi ý làm bài
(h.2.22)
Ta cần chứng minh \(\overrightarrow {AM} .\overrightarrow {BD} = 0\)
Tac có: \(2\overrightarrow {AM} = \overrightarrow {AH} + \overrightarrow {AD} \) vì M là trung điểm của đoạn HD.
\(\overrightarrow {BD} = \overrightarrow {BH} + \overrightarrow {HD} \)
Do đó:
\(2\overrightarrow {AM} .\overrightarrow {BD} = (\overrightarrow {AH} + \overrightarrow {AD} ).(\overrightarrow {BH} + \overrightarrow {HD} )\)
\(= \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0} + \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AD} .\overrightarrow {BH} + \underbrace {\overrightarrow {AD} .\overrightarrow {HD} }_{ = 0}\)
\( = > \,2\overrightarrow {AM} .\overrightarrow {BD} = \overrightarrow {AH} .\overrightarrow {HD} + \overrightarrow {AD} .\overrightarrow {BH} \)
\( = (\overrightarrow {AH} .\overrightarrow {HD} + (\overrightarrow {AH} + \overrightarrow {HD} ).\overrightarrow {BH} \)
\( = \overrightarrow {AH} .\overrightarrow {HD} + \underbrace {\overrightarrow {AH} .\overrightarrow {BH} }_{ = 0} + \overrightarrow {HD} .\overrightarrow {BH} \)
\( = \overrightarrow {HD} .(\underbrace {\overrightarrow {AH} +\overrightarrow {BH} }_{\overrightarrow {AC} }) = \overrightarrow {HD} .\overrightarrow {AC} = 0\)
Vậy AM vuông góc với BD.
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục