Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MB} .\overrightarrow {MD} \)
Gợi ý làm bài
(h.2.26)
\(2\overrightarrow {MP} .\overrightarrow {BC} = (\overrightarrow {MA} + \overrightarrow {MD} )(\overrightarrow {MC} - \overrightarrow {MB} )\)
\( = \overrightarrow {MA} .\overrightarrow {MC} - \underbrace {\overrightarrow {MA} .\overrightarrow {MB} }_0 + \underbrace {\overrightarrow {MD} .\overrightarrow {MC} }_0 - \overrightarrow {MD} .\overrightarrow {MB} \)
\(= \overrightarrow {MA} .\overrightarrow {MC} - \overrightarrow {MD} .\overrightarrow {MB} \)
Do đó: \(\overrightarrow {MP} \bot \overrightarrow {BC} \Leftrightarrow \overrightarrow {MP} .\overrightarrow {BC} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MD} .\overrightarrow {MB}\)
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục