Giải bất phương trình sau:
\({1 \over {x - 1}} + {1 \over {x + 2}} > {1 \over {x - 2}}\)
Gợi ý làm bài
\({1 \over {x - 1}} + {1 \over {x + 2}} > {1 \over {x - 2}} \Leftrightarrow {{x + 2 + x - 1} \over {(x + 2)(x - 1)}} > {1 \over {x - 2}}\)
\( \Leftrightarrow {{(2x + 1)(x - 2) - (x - 1)(x + 2)} \over {(x - 1)(x + 2)(x - 2)}} > 0\)
\( \Leftrightarrow {{{x^2} - 4x} \over {(x - 1)(x + 2)(x - 2)}} > 0\)
\( \Leftrightarrow {{x(x - 4)} \over {(x - 1)(x + 2)(x - 2)}} > 0(1)\)
Bảng xét dấu vế trái của (1)
Đáp số: \( - 2 < x < 0;1 < x < 2;4 < x < + \infty \)
Sachbaitap.net
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục