Dùng kí hiệu \(\forall \) và \(\exists \) để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
a) Mọi số thực cộng với số đối của nó đều bằng 0.
b) Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1.
c) Có một số thực bằng số đối của nó.
Gợi ý làm bài
a) \(\forall x \in R:x + ( - x) = 0\) (đúng)
Phủ định là \(\exists x \in R:x + ( - x) \ne 0\) (sai)
b) \(\forall x \in R\backslash {\rm{\{ }}0\} :x.{1 \over x} = 1\) (đúng)
Phủ định là \(\exists x \in R\backslash {\rm{\{ }}0\} :x.{1 \over x} \ne 1\) (sai)
c) \(\exists x \in R:x = - x\) (đúng)
Phủ định là \(\forall x \in R:x \ne - x\) (sai)
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục