Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 58 trang 124 Sách bài tập (SBT) Toán Đại số 10

Bình chọn:
4 trên 2 phiếu

Tìm m để các phương trình sau có hai nghiệm dương phân biệt

Tìm m để các phương trình sau có hai nghiệm dương phân biệt

a) \(({m^2} + m + 1){x^2} + (2m - 3)x + m - 5 = 0;\)

b) \({x^2} - 6mx + 2 - 2m + 9{m^2} = 0.\)

Gợi ý làm bài

a)

\({m^2} + m + 1 = {m^2} + 2.m.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4} \)\(\,= {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\,\,\forall m\)

Phương trình đã cho có hai nghiệm dương \({x_1},{x_2}\) phân biệt khi và chỉ khi

\(\eqalign{
& \left\{ \matrix{
\Delta ' > 0 \hfill \cr
- {b \over a} \hfill \cr
{c \over a} > 0 \hfill \cr} \right. > 0 \cr
& \Leftrightarrow \left\{ \matrix{
{(2m - 3)^2} - 4(m - 5)({m^2} + m + 1) > 0 \hfill \cr
{{ - (2m - 3)} \over {{m^2} + m + 1}} > 0(1) \hfill \cr
{{m - 5} \over {{m^2} + m + 1}} > 0(2) \hfill \cr} \right. \cr} \)

Vì \({m^2} + m + 1 > 0\) nên bất phương trình (1) \( \Leftrightarrow m < \dfrac{3 }{2}\)

Bất phương trình (2) \( \Leftrightarrow m > 5\)

Do đó không có giá trị của m thỏa mãn yêu cầu bài toán

b) Phương trình đã cho có hai nghiệm dương phân biệt khi và chỉ khi

\(\eqalign{
& \left\{ \matrix{
\Delta ' > 0 \hfill \cr
- {b \over a} \hfill \cr
{c \over a} > 0 \hfill \cr} \right. > 0 \Leftrightarrow \left\{ \matrix{
9{m^2} - (2 - 2m + 9{m^2}) > 0 \hfill \cr
{{6m} \over 1} > 0 \hfill \cr
{{9{m^2} - 2m + 2} \over 1} > 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
2m - 2 > 0 \hfill \cr
m > 0 \hfill \cr
9{m^2} - 2m + 2 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m > 1 \hfill \cr
\forall m \hfill \cr} \right. \Leftrightarrow m > 1. \cr} \)

Vậy \(m > 1\) thì phương trình đã cho có hai nghiệm dương phân biệt.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan